Code: EE1T3

I B. Tech - I Semester - Regular Examinations February - 2014

BASIC ELECTRICAL ENGINEERING (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- a) Define Electric current, Electric potential, Resistance,
 EMF, Conductance.
 7 M
 - b) A 60 W, 240 V incandescent filament lamp is switched on at 20° C. The operating temperature of the filament is 2000° C. Determine the current taken by the lamp at the instant of switching on. The temperature coefficient of resistance of the filament material is 0.0045 /K. 7 M
- 2. a) Explain Ohms law and Kirchoff's laws with an example.

 7 M
 - b) A battery consists of five cells, each having an emf of 1.2V and internal resistance of 0.4 ohm joined in series. If the battery supplies current to a 6 ohm resistor, calculate the current supplied by the battery and the potential difference across the battery terminals . 7 M

3. a) Obtain the relationship between power, torque and so of a rotating machine.	peed 7 M
b) A 240 V dc motor drives a pump lifting 1.2 m ³ of water minute to a height of 15m. If the efficiency of the motor and the pump is 61%, determine the electrical power input and the current taken from the supply. Assume that 1m ³ of water has a mass of 1000 kg.	e
ribbanio diale ini or water has a mass of 1000 kg.	/ IVI
 4. Define and explain a) Absolute permittivity b) Electric field c) Field strength d) Flux density e) Potential gradient f) Electric flux 	14 M
5. a) Derive the expression for the energy stored in a paral	lel
plate capacitor.	7 M
b) Two capacitors 8μf and 2μf are connected in series across a 400 V dc supply. Calculate the resultant capacitance, charge on each capacitor, the potential difference across each capacitor.	7 M
6. a) Compare magnetic circuit with electric circuit.	7 M

- b) A magnetic core, in the form of a closed ring, has a mean length of 20 cm and a cross section of 1 sq.cm. The relative permeability of iron is 2400. Calculate the magnitude of current needed in a coil of 2000 turns uniformly wound round the ring to create a flux of 0.2 mwb in the iron.
- 7. a) Explain the Faraday's laws of electromagnetic induction.

7 M

b) Derive the expression for energy stored in an inductor.

7 M

8. Describe the construction and characteristics of Nickel iron cell.

14 M